The dynamical study of O(1D) + HCl(v = 0, j = 0) reaction at hyperthermal collision energies

نویسندگان

  • Meihua Ge
  • Huan Yang
  • Yujun Zheng
چکیده

BACKGROUNDS The quasi-classical trajectory calculations for O(1D) + HCl → OH + Cl (R1) and O(1D) + HCl → ClO + H (R2) reactions have been performed at hyperthermal collision energies (60.0, 90.0, and 120.0 kal/mol) on the 1A' state. Reaction probabilities and integral cross sections are calculated. The product rotational distributions for the two channels, and the product rotational alignment parameters are investigated. Also, the alignment and the orientation of the products have been predicted through the angular distribution functions (concerning the initial/final velocity vector, and the product rotational angular momentum vector). To have a deeper understanding of the natures of the vector correlation between reagent and product relative velocities, a natural generalization of the differential cross section __PDDCS00, is calculated. RESULTS The OH + Cl channel is the main product channel and is observed to have essentially isotropic rotational distributions. The ClO + H channel is found to be clearly rotationally polarized. CONCLUSIONS The dynamical, especially the stereodynamical characters are quite different for the two channels of the title reaction. Most reactions occur directly, except for R2 reaction at the collision energies of 60.0 and 120.0 kcal/mol. The alignment and orientation effects are weak/strong for R1/R2 reaction. The well structure on the potential energy surface and hyperthermal collision energies might result in the dynamical effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossed-beams and theoretical studies of hyperthermal reactions of O(3P) with HCl.

The reaction of O((3)P) with HCl at hyperthermal collision energies (45-116 kcal mol(-1)) has been investigated with crossed-molecular beams experiments and direct dynamics quasi-classical trajectory calculations. The reaction may proceed by two primary pathways, (1) H-atom abstraction to produce OH and Cl and (2) H-atom elimination to produce H and ClO. The H-atom abstraction reaction follows ...

متن کامل

Quantum and quasiclassical studies of the O(3P)+HCl-->OH+Cl(2P) reaction using benchmark potential surfaces.

We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational...

متن کامل

Cl HD „v 1; J 1,2... reaction dynamics: Comparison between theory and experiment

Vibrationally state-resolved differential cross sections DCS and product rotational distributions have been measured for the Cl HD(v 1, J 1)→HCl DCl D H reaction at a mean collision energy of 0.065 eV using a photoinitiated reaction ‘‘photoloc’’ technique. The effect of HD reagent rotational alignment in the Cl HD(v 1, J 2) reaction has also been investigated. The experimental results have been...

متن کامل

Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up...

متن کامل

Quantum dynamical study of the O(1D)+HCl reaction employing three electronic state potential energy surfaces.

Quantum dynamical calculations are reported for the title reaction, for both product arrangement channels and using potential energy surfaces corresponding to the three electronic states, 1 1A', 2 1A', and 1 1A", which correlate with both reactants and products. The calculations have been performed for J=0 using the time-dependent real wavepacket approach by Gray and Balint-Kurti [J. Chem. Phys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013